Telomere-based proliferative lifespan barriers in Werner-syndrome fibroblasts involve both p53-dependent and p53-independent mechanisms.

نویسندگان

  • Terence Davis
  • Sim K Singhrao
  • Fiona S Wyllie
  • Michele F Haughton
  • Paul J Smith
  • Marie Wiltshire
  • David Wynford-Thomas
  • Christopher J Jones
  • Richard G A Faragher
  • David Kipling
چکیده

Werner-syndrome fibroblasts have a reduced in vitro life span before entering replicative senescence. Although this has been thought to be causal in the accelerated ageing of this disease, controversy remains as to whether Werner syndrome is showing the acceleration of a normal cellular ageing mechanism or the occurrence of a novel Werner-syndrome-specific process. Here, we analyse the signalling pathways responsible for senescence in Werner-syndrome fibroblasts. Cultured Werner-syndrome (AG05229) fibroblasts senesced after approximately 20 population doublings with most of the cells having a 2N content of DNA. This was associated with hypophosphorylated pRb and high levels of p16(Ink4a) and p21(Waf1). Senescent AG05229 cells re-entered the cell cycle following microinjection of a p53-neutralizing antibody. Similarly, production of the human papilloma virus 16 E6 oncoprotein in presenescent AG05229 cells resulted in senescence being bypassed and extended cellular life span. Werner-syndrome fibroblasts expressing E6 did not proliferate indefinitely but reached a second proliferative lifespan barrier, termed M(int), that could be bypassed by forced production of telomerase in post-M1 E6-producing cells. The conclusions from these studies are that: (1) replicative senescence in Werner-syndrome fibroblasts is a telomere-induced p53-dependent event; and (2) the intermediate lifespan barrier M(int) is also a telomere-induced event, although it appears to be independent of p53. Werner-syndrome fibroblasts resemble normal human fibroblasts for both these proliferative lifespan barriers, with the strong similarity between the signalling pathway linking telomeres to cell-cycle arrest in Werner-syndrome and normal fibroblasts providing further support for the defect in Werner syndrome causing the acceleration of a normal ageing mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A P53-dependent, telomere-independent proliferative life span barrier in human astrocytes consistent with the molecular genetics of glioma development.

An in vitro model, based on normal (primary) human astrocytes (NHAs), was used to investigate the nature of the selection pressures for events that occur during the progression of astrocyte-derived tumors and, in particular, the potential role of proliferative life span barriers (PLBs). As with fibroblasts, NHAs senesced with elevated p21(WAF1) and senescence-associated beta-galactosidase activ...

متن کامل

DNA damage checkpoint kinase Chk2 triggers replicative senescence.

Telomere shortening in normal human cells causes replicative senescence, a p53-dependent growth arrest state, which is thought to represent an innate defence against tumour progression. However, although it has been postulated that critical telomere loss generates a 'DNA damage' signal, the signalling pathway(s) that alerts cells to short dysfunctional telomeres remains only partially defined. ...

متن کامل

p16(INK4a) protects against dysfunctional telomere-induced ATR-dependent DNA damage responses.

Dysfunctional telomeres limit cellular proliferative capacity by activating the p53-p21- and p16(INK4a)-Rb-dependent DNA damage responses (DDRs). The p16(INK4a) tumor suppressor accumulates in aging tissues, is a biomarker for cellular senescence, and limits stem cell function in vivo. While the activation of a p53-dependent DDR by dysfunctional telomeres has been well documented in human cells...

متن کامل

CHK2-independent induction of telomere dysfunction checkpoints in stem and progenitor cells.

Telomere shortening limits the proliferation of primary human fibroblasts by the induction of senescence, which is mediated by ataxia telangiectasia mutated-dependent activation of p53. Here, we show that CHK2 deletion impairs the induction of senescence in mouse and human fibroblasts. By contrast, CHK2 deletion did not improve the stem-cell function, organ maintenance and lifespan of telomere ...

متن کامل

ATM-dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post-translational activation of p53 protein involving poly(ADP-ribose) polymerase.

Telomere loss has been proposed as a mechanism for counting cell divisions during aging in normal somatic cells. How such a mitotic clock initiates the intracellular signalling events that culminate in G1 cell cycle arrest and senescence to restrict the lifespan of normal human cells is not known. We investigated the possibility that critically short telomere length activates a DNA damage respo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 116 Pt 7  شماره 

صفحات  -

تاریخ انتشار 2003